Drug
Discovery

The fast pace of modern drug discovery means laboratories are handling a high volume of increasingly complex experiments and need innovative solutions to optimize workflows and increase efficiency.

Streamline Drug Discovery Workflows

We streamline critical workflows and increase your agility, efficiency and productivity across applications from assay development, medicinal chemistry and 3D cell cultures to functional genomics and proteomics. By automating complex liquid handling tasks, reducing reagent requirements and increasing assay robustness we allow researchers to reach important project milestones quickly, economically and confidently.

structure-icon

Automated
Assay Development

Automated assay development involves the systematic optimization of multiple variables to deliver a robust assay for screening. Innovative liquid handling instrumentation and intuitive software enable researchers to design and execute multifactorial experiments swiftly.

Explore related products

Assay Setup

precise-icon

Low Volume
Liquid Handling

Precise and robust low volume liquid handling technology delivers exceptional accuracy and speed even at the smallest volumes, empowering your lab to do more, with less.

Learn more
stacked-icon

Reagent
Bulk Dispensing

Rapid and reliable reagent bulk dispensing across a wide range of liquid classes and reagents boosts productivity even for complex assays.

Learn more
molecule-icon

3D Cell Culture

3D cell cultures are driving new scientific breakthroughs in basic research, drug discovery and personalized medicine applications. High throughput, automated liquid handling solutions help researchers to work more effectively with challenging reagents and precious cells, to unlock the technology’s full potential.

Learn more

Medicinal Chemistry

The continuous cycle of synthesis and analysis is a well-known pain point in molecular discovery projects.
 
Our innovative liquid handling, pneumatic transport and solvent evaporation technologies transform medicinal chemistry workflows to enable more efficient synthesis and analysis of chemical analogs.
 
 
 
stacked-icon

Nanoscale Chemistry and
High Throughput
Experimentation

High throughput experimentation (HTE) involves running multiple, nanoscale chemical reactions in parallel. HTE can be used to investigate specific chemical questions of interest (e.g. probing reaction mechanisms or examining reaction scope) or to optimise reaction parameters. Efficient HTE setup and analysis relies on flexible, low-volume liquid handling automation that is compatible with a wide range of chemical building blocks, catalysts and solvents.

Explore Medicinal Chemistry
molecule-icon

Chemical
Crystallization

Single crystal X-ray diffraction (SCXRD) is an essential tool for analyzing 3D structures of small organic molecules, yielding direct atomic-level information on both the molecular and extended structure of a crystalline material e.g., absolute stereochemical assignment. Diffraction methods are heavily reliant on the ability to grow high-quality crystals of the target molecules, which often becomes a bottleneck in the process and consumes large amounts of time and sample. As a result, the desire to screen more crystallization space with significantly less sample is driving new methods to deliver ever more data from both SCXRD and electron diffraction. 

Find out more
DNA-icon---teal

Proteomics

The analysis of all proteins produced by an organism allows researchers to study their role on a functional level. This can be done for various reasons, such as screening for markers of disease, examining the role of post-translational modifications, investigating protein-protein interactions, and monitoring dynamic changes in protein expression over time. Often used in conjunction with other functional genomics approaches, proteomics plays a crucial role in understanding disease mechanisms and the validation of targets. Our proven miniaturization technology bolsters high-throughput protein biomarker discovery with the Olink Explore platform

Explore related products
DNA-strand

Functional Genomics

Functional genomics plays an instrumental role in target validation studies. Technologies such as RNA interference and CRISPR-Cas9 gene knockout allow researchers to investigate the roles of particular genes in models of health and disease. With a growing toolbox of complementary techniques to interrogate phenotypes and access to patient-derived cells, researchers are increasingly looking for methods that allow them to scale their functional genomics assays economically.

Explore related products

Meet our Field Application Scientists

Our Field Application Scientists will help you to advance your research goals throughout the life of your instrument, optimizing for the applications you need and harnessing its full potential. As specialists in a range of disciplines including drug discovery, the team ensures that the protocols for your applications are scientifically robust, giving you the confidence to pursue novel approaches.  Working closely with customers, Field Application Scientists eliminate bottlenecks and streamline workflows to enable successful research outcomes.

FAS-module-hero
Find our more about our team
Check out the latest publication references for our drug discovery instruments.
Explore publications